Обзор: Если в отеле будет бесконечное

Если в отеле будет бесконечное количество постояльцев, то к ним всегда можно подселить ещё одного.

Счётное множество — бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество является счётным, если существует биекция со множеством натуральных чисел: , другими словами, счётное множество — это множество, равномощное множеству натуральных чисел. В иерархии алефов мощность счётного множества обозначается («алеф-нуль»).

Парадокс «Гранд-отель» — мысленный эксперимент, иллюстрирующий свойства бесконечных множеств. Он демонстрирует отель с бесконечным количеством комнат, в каждой из которых находится постоялец. При этом в гостиницу всегда можно подселить ещё посетителей, даже если их бесконечное множество. Впервые парадокс был сформулирован немецким математиком Давидом Гильбертом в 1924 году и популяризирован в книге Георгия Гамова «Раз, два, три… бесконечность» в 1947 году.

Теги: Парадокс «Гранд-отель» Счётное множество Если отеле будет количество всегда можно одного

×

Корректировка статьи


Читайте также